Determining Markers PIGF, sFlt1 and the Ratio sFlt1/PIGF - Prognostic Tool in Patients with Preeclampsia

IZABELLA PETRE^{1#}, ELENA BERNAD^{1#}, MARIUS CRAINA^{1*}, COSMIN CITU², SORIN BOLINTINEANU^{3#}, ELENA POP^{3#}, DANA STOIAN¹, SIMONA SIPOS⁴, DIANA LUNGEANU², CRISTIAN FURAU⁵, GHEORGHE FURAU^{5*}, STELIAN PANTEA^{6*}, IOANA IONITA⁷

¹Victor Babes University of Medicine and Pharmacy Timisoara, Department of Obstetrics and Gynecology, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

²Victor Babes University of Medicine and Pharmacy Timisoara, Department of Medical Informatics, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

³Victor Babes University of Medicine and Pharmacy Timisoara, Department of Anatomy and Embryology, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

⁴Victor Babes University of Medicine and Pharmacy Timisoara, Pharmacology discipline, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

⁵ Western University Vasile Goldis Arad, Department of Obstetrics and Gynecology, 94 Revolutiei Blvd., 310025, Arad, Romania ⁶Victor Babes University of Medicine and Pharmacy Timisoara, Surgery Department, 2 Eftimie Murgu Sq., 300041,Timisoara, Romania

⁷Victor Babes University of Medicine and Pharmacy Timisoara, Hematology discipline, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

Preeclampsia represents a pregnancy complication characterized by high blood pressure and proteinuria, after the 20th week of gestation. It appears in 3-5% of pregnant women, having a substantial maternal, foetal and neo-natal mortality and morbidity rate. In a normal pregnancy: the PIGF (package factor) serum level increases in the first two trimesters of pregnancy and decreases as the pregnancy comes to term; the serum level of sFlt-1 remains stable in the first two trimesters of pregnancy, and then increases as the pregnancy comes to term. In the cases of women who develop preeclampsia, the level of sFlt-1 is higher and that of PIGF is lower, than in normal pregnancies. The ration of sFlt-1/PIGF is a better indicator of preeclampsia than any other of the two individually evaluated factors. The results of our study come to confirm the importance of determining these markers for the diagnosis and monitoring of pregnant women and at the same time to highlight the fact that the ratio of sFlt- 1/PIGF represents a good predictor of preeclampsia.

Keywords: gestational age, PIGF, preeclamsia, pregnancy, sFlt1.

Preeclampsia and its complications, eclampsia and HELLP syndrome (Haemolysis, Elevated Liver enzymes, Low Platelet count), are the most frequent causes of maternal and foetal morbidity in the world. Despite all of the presented complications, preeclampsia can have a favourable diagnosis if the pregnant woman is hospitalized in time and is monitored by a medical team (obstetrician, anaesthesiologist, and neonatologist) [1-6]. Despite numerous researches, preeclampsia ethiopatogeny is not clearly known, there are numerous studies which favour a number of theories, but no final theory has been established, accepted by everyone. Recent theories maintain that at the base of preeclampsia ethiology a significant contribution is attributed to the imbalance between of angiogenic factors - the endothelial vascular growth factor (VEGF) and the placenta growth factor (PIGF) and those antiangiogenic factors - soluble tyrosine-kinase 1 fms-like (sFlt1) and soluble endoglin (sEng). PIGF and sFlt-1 can differentiate a normal pregnancy from a preeclampsia one, even before the clinical symptoms are shown [7-12].

Experimental part

The study took place between 2014 and 2015, at the Obstetrics and Gynaecology I and II wards of the Timisoara County Emergency Clinical Hospital Pius Brinzei – the only third party unit from the West Region, in collaboration with all profile units in the area and it tried to establish the level of the sFlt-1/PIGF ratio, as a diagnosis instrument in preeclampsia patients depending on the influence of cumulative risk factors.

The study had a number of 50 pregnant women which have given freely their consent to become part of the study, for which the PIGF and sFlt-1 biomarkers have been determined and the sFlt-1/ PIGF ratio has been calculated.

Results and discussions

Statistics referring to group characteristics [®] numeric variables

The results synthesis of the 50 cases (tables 1 and 2).

	N	Minimum	Maximum	Average	Deviation Std.	
Age [years]	50	22	41	31.40	4.768	Table 1 STATISTICS REFERRING
Height [cm]	50	147	196	164.50	7.332	TO GROUP CHARACTERISTICS
W before pregnancy [kg]	50	50	116	67.88	13.247	

 # These authors contributed equally to this work

Environment	Number of cases (total 50 cases)	Percentage of the total, %	Table 2
rural	21	42	STATISTICS REFERRING TO GROUP
urban	29	58	CHARACTERISTICS

Gestation	Number of cases (total 50 cases)	Percentage of the total, %	Table 9
0	6	12	
1	16	32	STATISTICS REGARDING TO
2	20	40	GESTATION
3	6	12	
4	2	4	

Parity	Number of cases (total 50 cases)	Percentage of the total, %
0	19	38
1	27	54
2	Λ	8

Table 4 STATISTICS REGARDING TO PARITY

Births before the study	Number of cases (total 50 cases)	Percentage of the total, %	
0	26	52	ST
1	22	44	
2	2	4	

Percentage of the total,

%

2

30

40

16

8

4

Table 5 ATISTICS REGARDING TO BIRTHS

Education level	Number of cases (total 50 cases)	Percentage of the total, %	
High school	23	46	
Primary	4	8	
Higher education	23	46	

Table 7 STATISTICS REGARDING TO GESTATIONAL WEEKS

Number of cases (total

50 cases)

1

15

20

4

2

Gestational age,

weeks

14

15

16

17

18

19

Table 6 STATISTICS REGARDING TO EDUCATION LEVEL

Table 8 STATISTICS REFERRING TO BIOLOGICAL VALUES

	N	Minimum	Maximum	Average	Deviation Std.
sFlt-1	50	486.90	2898.00	1526.57	598.19
PIGF	50	36.00	684.80	174.75	120.82
Ratio	50	2.48	33.11	11.93	7.77
Wight difference	50	-8	14	2.55	3.99

Statistics regarding to group characteristics \rightarrow category variables

The results synthesis of the 50 cases (tables 3-7).

- Statistics reffering to biological values - The results synthesis of the 50 cases:

Is the ratio of biological values in between normal limits?

sFlt-1 « PIGF ratio analysis: is there a difference between biological values or between their ratios for the three gestational ages of the lot? [13-15]. - 15w, 16w, 17w \leftarrow we eliminated everything that was below 15w (one case) or higher than 17w (6 cases) Test variant homogeneity: p=0.001^{**} \rightarrow the variants are not homogenous \rightarrow the post-hoc test will be Tamhane.

	1	ratio OK				
Gestational age, weeks	NO	YES	Total			
14	0	1	1	Table 9 STATISTICS REFERRING TO GESTATIONAL AGE		
15	3	12	15]		
16	0	20	20			
17	0	8	8			
18	0	4	4			
19	0	2	2]		
Total	3	47	50			

sFlt-1	N	Min	Max	Average	StdErr	95% CI	Test post-hoc				
15	15	876.00	2719.00	1562.53	147.29	(1246.63 - 878.44)	-				
16	20	486.90	2898.00	1516.08	157.16	(1187.16 - 1845.01)	-				
17	8	1047.00	1994.00	1525.88	118.77	(1245.02 - 1806.73)	-				
Total	43	486.90	2898.00	1534.11	90.37	(1351.73 - 1716.49)	-				
Test variar	Test variant homogeneity: $p=0.14 \rightarrow$ the variants are homogenous										

Table 10 STATISTICS FERRING TO IOLOGICAL LUES - sFlt-1

Test ANOVA \rightarrow p=0.974 \rightarrow values sFlt-1 does not present significant statistical differences between the three groups

Variant analysis for biological values for the three groups of gestational age (43 cases)

Fig. 3. Variant analysis for biological values - PIGF

PIGF	N	Min	Max	Average	StdErr	95% CI	Test post-hoc			
15	15	64.00	168.80	99.91	8.2	(82.33 - 117.49)	15vs16 → p=0.076 15vs17 → p=0.001**	Table 11 STATISTICS REFERRING TO		
16	20	36.00	684.80	167.06	31.43	(101.27 - 232.86)	16vs17 → p=0.019*	BIOLOGICAL VALUES - PIGF		
17	8	123.00	465.00	277.16	36.89	(189.92 - 364.41)	-			
Total 43 36.00 684.80 164.12 18.68 (126.43 - 201.82) -										
Test varian	Test variant homogeneity: $p=0.123 \rightarrow$ the variants are homogenous \rightarrow the post-hoc test will be LSD									
Test ANO → a post-h	Test ANOVA \rightarrow p=0.002** \rightarrow PIGF values present very significant statistical differences, i.e. there is at least one different group \rightarrow a post-hoc test will be applied for the comparison of two groups [16].									

	Table	12		
STATISTICS	REFER	RING	TO	RATIC

Ratio	N	Min	Max	Average	StdErr	95% CI	Test
							post-hoc
15	15	5.97	33.11	17.41	2.2	(12.68 - 22.14)	15vs16 → p=0.165 15vs17 → p=0.001**
16	20	2.48	23.04	12.09	1.54	(8.87 - 15.30)	16vs17 → p=0.003**
17	8	3.87	8.51	5.94	0.56	(4.62 - 7.26)	-
Total	43	2.48	33.11	12.80	1.21	(10.36 - 15.24)	-

Test ANOVA \rightarrow p=0.002** \rightarrow the reports values show very significant statistical differences, there is at least one different group \rightarrow the post-hoc test will be applied for comparison of two groups

sl'lt-1	N	Min	Max	Average	StdErr	95% CI	Test post-hoc	
								Table 13
15	15	876.00	2719.00	1562.53	147.29	(1246.63 - 878.44)	-	VARIANTS ANALYSIS
16	20	486.90	2898.00	1516.08	157.16	(1187.16 - 1845.01)	-	VALUES IN THE
17	14	519.30	1994.00	1427.76	113.027	(1183.59 - 1671.93)	-	THREE GESTATIONA
Total	49	486.90	2898.00	1505.07	83.51	(1337.17 - 1672.97)	-	AGE GROUPS (49
Test varia	CASES)							

PIGF	N	Min	Max	Average	StdErr	95% CI	Test post-hoc	
15	15	64.00	168.80	99.91	8.2	(82.33 - 117.49)	15vs16 → p=0.07 15vs17 → p<0.001**	
16	20	36.00	684.80	167.06	31.43	(101.27 - 232.86)	16vs17 → p=0.011*	
17	14	123.00	465.00	264.81	26.38	(207.82 - 321.81)	-	
Total	49	36.00	684.80	174.43	17.46	(139.38 - 209.49)	-	
Test variant homogeneity: $p=0.081 \rightarrow$ the variants are homogenous, at the border of statistical significance \rightarrow the post-hoc test will be LSD								

Test ANOVA \rightarrow p=0.001** \rightarrow the PIGF values show very significant statistical differences, i.e. there is at least one different group \rightarrow the post-hoc test will be applied for comparison of two groups

Table 15STATISTICS REFERRING TO RATIO

Ratio	N	Min	Max	Average	StdErr	95% CI	Test post-hoc	
15	15	5.97	33.11	17.41	2.2	(12.68 - 22.14)	15vs16 → p=0.165 15vs17 → p<0.001**	
16	20	2.48	23.04	12.09	1.54	(8.87 - 15.30)	16vs17 → p=0.002**	
17	14	3.09	8.51	5.690	0.450	(4.7 - 6.67)	-	
Total	49	2.48	33.11	11.89	1.120	(9.64 - 14.14)	-	
Test variant homogeneity: $p < 0.001^{**} \rightarrow$ the variants are not homogeneous \rightarrow the post-hoc test will be Tamhane								
Test ANOVA \rightarrow p<0.001** \rightarrow the values of the report show very significant statistical difference, i.e. there is at least one different group \rightarrow the post- hoc test will be applied for comparison of two groups								

Conclusions

The results of our study come to confirm the importance of determining these markers for the diagnosis and monitoring of pregnant women and at the same time to highlight the fact that the sFlt-1/PIGF ratio represents a good predictor of preeclampsia.

Together with the evaluation of the general state, the sFlt-1/PIGF ratio is an objective factor in the evaluation of suspicions in preeclampsia. Recent research has shown the the value of the sFlt-1/PIGF ratio can be associated with the severity of preeclampsia, offering a short term prediction in regards to the duration of the pregnancy, which helps in identifying women at immediate birth risk. For the measurement of the PIGF and sFlt-1 levels, there are standardized and automatic tests available at global level, for ensuring the correct diagnosis and monitoring of preeclampsia at a large scale.

In conclusion, similar to other medical domains, the usage of new technology in preeclampsia looks rather promising. Additional studies are necessary, some are already on-going, in order to clarify the role of PIGF and sFlt-1 in the diagnosis and algorithm of preeclampsia management.

References

1. HORNIG, C., BARLEON, B., AHMAD, S., VUORELA, P., AHMED, A., WEICH, H.A. Lab. Invest. 80, 2000, p. 443.

2. TROISI, R., BRAEKKE, K., HARSEM, N.K., HYER, M., HOOVER, R.N., STAFF, A.C. Am. J. Obstet. Gynecol. 199, 2008 p. e1.

3. LEVINE, R.J., THADHANI, R., QIAN, C., LAM, C., LIM, K.H., YU, K.F., BLINK, A.L., SACHS, B.P., EPSTEIN, F.H., SIBAI, B.M., SUKHATME, V.P., KARUMANCHI, S.A. JAMA 293, 2005, p. 77.

4. BUHIMSCHI, C.S., NORWITZ, E.R., FUNAI, E., RICHMAN, S., GULLER, S., LOCKWOOD, C.J., BUHIMSCHI, I.A. Am. J. Obstet. Gynecol. 192, 2005, p. 734.

5. LAM, C., LIM, K.H., KARUMANCHI, S. Hypertension 46, 2005, p. 1077.

6. FOYOUZI, N., NORWITZ, E.R., TSEN, L.C., BUHIMSCHI, C.S., BUHIMSCHI, I.A. Int. J. Gynecol. Obstet. 92, 2006, p. 32.

7. CIPOLLA, M.J., KRAIG, R.P. Fetal Matern. Med. Rev. 22, 2011, p. 91. 8. BARTYNSKI, W.S. AJNR Am J Neuroradiol. 29, 2008, p. 1036.

9. TORRILLO, T.M., BRONSTER, D.J., BEILIN, Y. Int. J. Obstet. Anesth. 16, 2007, p. 171.

10. EKAWA, Y., SHIOTA, M., TAKAKO, T., SHIMAOKA, M., TSURITANI, M., KOTANI, Y., MIZUNO, Y., HOSHIAI, H. Tohoku J. Exp. Med. 226, 2012, p. 55.

11. SUNDERJI, S., GAZIANO, E., WOTHE, D., ROGERS, L.C., SIBAI, B., KARUMANCHI, S.A., HODGES-SAVOLA, C. Am. J. Obstet. Gynecol. 202, 2010, p. e1.

12. LAI, J., PINAS, A., POON, L.C., AGATHOKLEOUS, M., NICOLAIDES, K.H. Fetal Diagn. Ther. 33, 2013, p. 164.

13. CHAIWORAPONGSA, T., ROMERO, R., KORZENIEWSKI, S.J., KUSANOVIC, J.P., SOTO, E., LAM, J., DONG, Z., THAN, N.G., YEO, L., HERNANDEZ-ANDRADE, E., CONDE-AGUDELO, A., HASSAN, S.S. Am. J. Obstet. Gynecol. 208, 2013, p. e1.

14. RANA, S., POWE, C.E., SALAHUDDIN, S., VERLOHREN, S., PERSCHEL, F.H., LEVINE, R.J., LIM, K.H., WENGER, J.B., THADHANI, R., KARUMANCHI, S.A. Circulation 125, 2012, p. 911.

15. BENTON, S.J., HU, Y., XIE, F., KUPFER, K., LEE, S.W., MAGEE, L.A., VON DADELSZEN, P Am. J. Obstet. Gynecol. 205, 2011, p. e1.

16. VERLOHREN, S., HERRAIZ, I., LÁPAIRE, O., SCHLÉMBACH, D., MOERTL, M., ZEISLER, H., CALDA, P., HOLZGREVE, W., GALINDO, A., ENGELS, T., DENK, B., STEPAN, H. Am. J. Obstet. Gynecol. 206, 2012, p. e1.

Manuscript received: 24.03.2016